Model 404

Pyroelectric IR Detector with Both Voltage and Current Mode Electronics

Manufactured under one or more of the following U.S. patents: 3,839,640 - 4,218,620 - 4,326,663 - 4,384,207 - 4,437,003 - 4,441,023 - 4,523,095

Model 404 consists of a single lithium tantalate sensing element and electronics configured for 3 modes of operation sealed into a modified TO-99 transistor housing with optical filter.

- (1) The voltage mode circuit: Configured as a JFET source follower with source resistor, provides a voltage output with the best possible signal-to-noise (S/N) ratio thoughout a frequency range of .1 to 1000 Hz.
- (2) The current mode circuit: Functions as a current-to-voltage converter and provides substantially higher voltage responsivity with slightly lower S/N performance.
- (3) Model 404 may also be operated as a detector without internal electronics (see "Pin Connections" table on reverse).

Applications

- Pyrometry
- FT Spectroscopy
- · Gas Analysis
- Materials' Transmission / Reflectance Studies
- UV Curing Instrumentation
- Total Energy Plasma Studies

Characteristics		Voltage Mode	Current Mode	Unit	Test Conditions	ELTECdata Reference
Detector Type		Single	Single		Conditions	Helefelloc
Element Size		2.0	2.0	mm,Dia	Nominal	
Optical Bandwidth		0.0001	0.0001	μm	Without filter	101
		to 1000	to 1000			
Responsivity	(Typ)	1,840	12,100	V/W	7.6-14.6 µm, 1Hz	
Responsivity	(Typ)	236	7,430	V/W	7.6-14.6 µm, 10Hz	
NEP	(Typ)	3.78X10 ⁻¹⁰	5.21X10 ⁻¹⁰	W/√Hz	7.6-14.6 μm	100
					1Hz, BW 1Hz	
NEP	(Typ)	1.02X10 ⁻⁹	1.75X10 ⁻⁹	W/√Hz	7.6-14.6 μm	100
					10 Hz, BW 1Hz	
D*	(Typ)	4.69X10 ⁸	3.4X10 ⁸	cm√Hz/W	7.6-14.6 μm	100
					1Hz, BW 1Hz	
D*	(Тур)	1.74X10 ⁸	1.01X10 ⁸	cm√Hz/W	7.6-14.6 μm	100
					10 Hz, BW 1Hz	
Operating	(Min)	+5	± 5	VDC		104
Voltage	(Max)	+ 15	± 15			(4.1.c)
Operating	(Max)	0.2	5.0	mA		104
Current						(4.1.c)
Offset	(Min)	0.2		٧	$R_S=6.2K\Omega$	104
Voltage	(Max)	1.2	0.1			Fig. 4
Output Impedance		<6.2K	< 100	Ω		
Thermal	(Тур)	0.25	0.25	Hz		102
Breakpoint f _T						
Electrical	(Тур)	0.01	20	Hz	R _L ≃5 X 10 ¹¹ Ω	102
Breakpoint f _e					$R_{F}=1 \times 10^{10} \Omega$	
Recommended		-10 +40	-10 +40	°C		
Operating Temp.						
Storage Temperature		-55 +125	-55 +125	°C	ΔT<50C ^o /minute	

Characteristics at 25° C, with -3 filter, VS = 10 VDC for VM; ± 10 VDC for CM. Data is established on a sample basis and is believed to be representative.

FREQUENCY RESPONSE

Voltage Mode Operation

5X10¹¹Ω

 $10^8\Omega$

10⁷Ω

ιο⁹Ω

Field of View: Approximately 110° (50% power points).

Mounting: Avoid mechanical stresses on case and leads.

Soldering: Use minimum heat and a heat sink between case and leads. Leave minimum lead length of .25 inch (6.0mm). DO NOT MACHINE SOLDER.

Static Discharge: Protect detectors from electrostatic charges.

Thermal Shock: Temperature changes and rate of change must be kept to a minimum (<50C°/min.) to prevent damage.

Power Polarity: Carefully note power supply polarity connections to avoid damage to internal op amp.

Output Protection: Output is short circuit protected in both current and voltage modes.

Current Mode Output: Output in the current mode is inverting (negative output for positive temperature change).

Voltage Mode Output: No external resistor is needed in the voltage mode because the Model 404 contains an internal source resistor of 6.2 K Ω .

Optical Filter: This Model can be used with any standard ELTEC detector filter or used without a filter. For more information, please refer to ELTECdata #101.

Noise: As a resolution or low level information limit, noise is established not only by the detector. Other noise sources are:

- Radiated and conducted RF signals
- Subsequent amplification or signal conditioning stages
- Power supply noise

100K

10k

18

100

10

- Components, such as high value resistors and capacitors (tantalum and aluminum electrolytic)
- Mechanical contacts and weak solder joints
- Vibration excited microphonics
- Outside thermal influences on the detector other than the desired infrared input, i.e. drafts.

All of these noise sources should be considered carefully when the information signal is <1mV for voltage mode operation and <20mV for current mode operation.

Light Leakage: Slight sensitivity to visible light leaking through the glass-to-metal seal on the base may be observed.

Calculations (for operation with only crystal and load resistor): When calculating response from basic formulae, (see ELTECdata #100) use crystal thickness as 0.005 cm and use 30 pF capacitance for crystal.

Optical Design: Use of a detector with a filter in an optical system may require consideration of the image displacement toward the filter. This displacement (s) caused by the insertion of a planoparallel plate (filter thickness = t; refractive index = N) is given by s = (t/N)(N-1).

