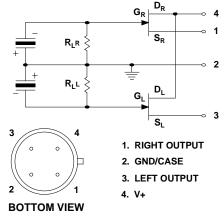
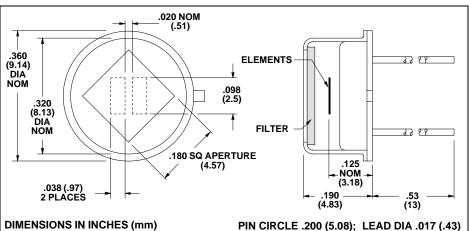
Model 429 Twin Channel Pyroelectric IR Detector with JFET Amplifier

Manufactured under one or more of the following U.S. patents: 3,839,640 - 4,218,620 - 4,326,663 - 4,384,207 - 4,437,003 - 4,441,023 - 4,523,095

Model 429 consists of two lithium tantalate sensing elements, each with a JFET amplifier and output pin, sealed into a 4-pin TO-5 housing with optical filter.

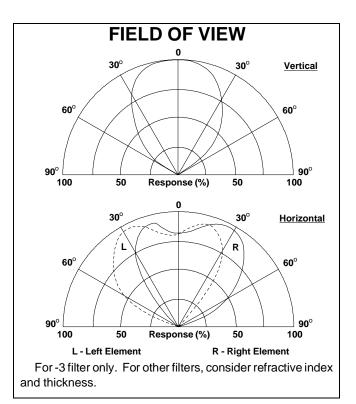

The minimum common mode rejection ratio for dual element detectors (series or parallel opposed) is typically 5:1. Much higher ratios are possible for the Model 429 because it allows external trimming to balance the gain of each element.


In application, the Model 429 can be used as a dual element detector with common mode cancellation accomplished in external circuitry. It can be used to determine direction of a moving object or used as a single element sensor with the second channel used for redundancy or system backup.

Two source resistors, 47 K Ω or greater are needed to set JFET drain currents. Outputs are negative for positive inputs.

Applications

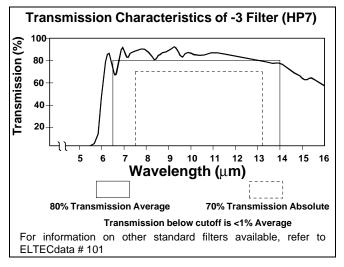
- Perimeter Surveillance
- **High Reliability Intrusion** • Detection
- Infrared Telescopes
- Industrial Control
- Flame Detection

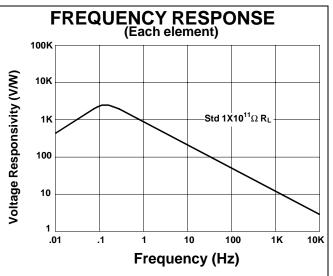


DIMENSIONS IN INCHES (mm)

Characteristics		429	Unit	Test Conditions	ELTECdata Reference
Detector Type:		Twin Ch.			
Element Size:		1.0 x 2.5	mm	Nominal, each	
Element Spacing:		0.5	mm	Nominal	
Responsivity (Each Element)	(Typ):	5,000	V/W	8 to 14 µm @ 1Hz	
Channel Separation		30	dB	8 to 14 μm @ 1Hz	
Responsivity Ratio	(Max):	1.25		8 to 14 μm @ 1Hz	
Noise	(Typ):	30	μV/√Hz	1.0 Hz p-p (1 minute)	
NEP	(Typ):	1.5 X 10 ⁻⁹	W/√Hz	8 to 14 μm @ 1Hz, BW 1 Hz	100
D*	(Typ):	1.0 X 10 ⁸	cm√Hz/W	8 - 14 μm BW 1 Hz	100
Operating Voltage	(Min): (Max):	3 15	VDC	V+ to Gnd	104 (4.1.c)
Operating Current	(Min): (Max):	0.1 40	μΑ	Each Channel	104 (4.1.c)
Offset Voltage	(Min): (Max):	0.3 1.2	VDC	R _S = 100KΩ	104 Fig. 4
Output Impedance:		≤ R _S			
Thermal Breakpoint f _T	(Typ):	0.2	Hz		102
Electrical Breakpoint fe	(Typ):	0.1	Hz	$R_{L} = 1X10^{11}\Omega$	102
Recommended Operat Temperature:	ing	-10 +50	°C	Functional	
Incident Power Limit:	(Max):	10	mW		
Package Sealing	(Max):	10 ⁻⁸	cm ³ /sec	Helium	
Storage Temperature:		-55 +125	°C	ΔT < 50 C ^o /minute	

Characteristics 25°C, with -3 filter, V_D = 5 VDC, R_S = 100K Ω each channel unless otherwise stated. Data established on a sample basis and is believed to be representative.


For best results, the following precautions and recommendations should be observed. (See ELTECdata # 101):


Mounting: Avoid mechanical stresses on case and leads.

Soldering: Use minimum heat and a heat sink between case and leads. Leave minimum lead length of .250 inch (6.35mm). DO NOT MACHINE SOLDER.

Static Discharge: Protect detectors from electrostatic charges.

Thermal Shock: Temperature changes and rate of change must be kept to a minimum ($<50C^{o}$ /min.) to prevent damage.

The voltage response of this detector is dependent on the pulse rate or equivalent frequency of input. The frequency response of the detector can be linearized by using a lower value resistor, but at the expense of lower responsivity and a lower D*. Load resistor values other than the standard $1X10^{11}\Omega$ can be specified.

Noise: As a resolution or lower information limit, noise is established not only by the detector. Other noise sources are:

- Radiated and conducted RF signals
- Subsequent amplification or signal conditioning stages
- Power supply noise
- Components, such as high value resistors and capacitors (tantalum or aluminum electrolytic)
- Mechanical contacts and weak solder joints
- Shock and vibration excited microphonics
- Outside thermal influences on the detector other than the desired infrared input, i.e. drafts.

All of these noise sources should be considered carefully when the information signal is <1mV.

Light Leakage: Slight sensitivity to visible light leaking through the glass-to-metal seal on the base may be observed.

Optical Design: Use of a detector with a filter in an optical system may require consideration of the image displacement toward the filter. This displacement (s) caused by the insertion of a planoparallel plate (filter thickness = t; refractive index = N) is given by s = (t/N)(N-1).

Optical Bandwidth: The detector is sensitive in a range from 1.5 to $1000 \,\mu\text{m}$ depending on filter used. For more information, see ELTECdata # 101.

Silverlight Ltd., CH-Winterthur info@silverlight.ch | www.silverlight.ch