

Part Number: 4PN-108

High Power 4-Pin Fiber Coupled Module Multi-Mode Fabry-Perot Laser Diode CW Wavelength at 1550nm

Features

- High Output Power
- High Dynamic Range
- High Efficiency
- 4-Pin Fiber Coupled Module
- Cost Effective

Application

- Professional Medical
- Aerospace

SemiNex delivers the highest available power at infrared wavelengths between 12xx and 19xx nm. When necessary, we will further optimize the design of our InP & GaSb laser chips to meet our customers' specific optical and electrical performance needs. Diodes, bars and packages are tested to meet customer and market performance demands. Typical results and packaging options are shown. Contact SemiNex for additional details or to discuss your specific requirements.

SemiNex Corporation • 153 Andover Street, Suite 201, Danvers, MA 01923 • 978-326-7700 • sales@seminex.com

Specification

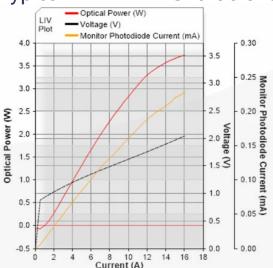
4PN-108

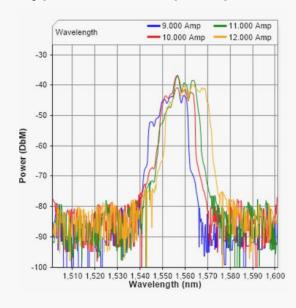
Optical	Symbol	Тур.	Units
Center Wavelength	λ _c	1550	nm (±20)
Output Power (CW)*	P _{out}	3.3	watts (±10%)
Spectral Width FWHM	Δλ	10	nm
Slope Efficiency	η	0.30	W/A
Optical Fiber Core Dia.		105	μm
Optical Fiber NA		0.22	
Electrical	Symbol		Units
Power Conversion Eff.	η	16	%
Operating Current	Гор	12	А
Threshold Current	ITH	0.5	А
Operating Voltage	V _{op}	1.7	V
Mechanical	Symbol		Units
Fiber Length		1.5	meters
Connector Type		SMA905	
Thermistor Constant		3477	β
Thermistor Resistance		10	K ohm
		Range	
Operating Temp.**		-40 to 60	°C
Storage Temp.		-40 to 80	°C

PLEASE NOTE: The 4 Pin laser package is not electrically isolated. The package body is the anode connection. Care should be taken in mounting and installation.

*Specified values are rated at a constant heat sink temperature of 20°C.

**High temperature operation will reduce performance and MTTF.

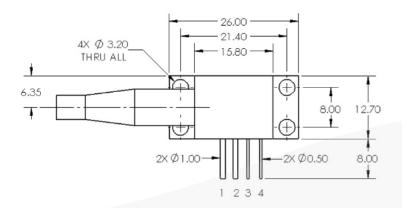

Unless otherwise indicated all values are nominal.

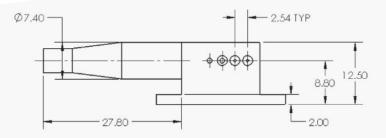

SemiNex Laser Diodes 4PN-108

Graphs & Data

Typical 4PN L-I-V Characteristics

Typical 4PN Output Spectrum




SemiNex Corporation • 153 Andover Street, Suite 201, Danvers, MA 01923 • 978-326-7700 • sales@seminex.com

Mechanical Drawing

PIN OUT: (FOR REFERENCE ONLY, REFER TO DOCUMENTATION SUBMITTED WITH PRODUCT FOR ACTUAL PIN OUT)

LD ANODE (+)
 LD CATHODE (-)
 PD (-) or THERMISTOR
 PD (+) or THERMISTOR

All statements, technical information and recommendations related to the product herein are based upon information believed to be reliable or accurate. The accuracy or completeness herein is not guaranteed, and no responsibility is assumed for any inaccuracies. The user assumes all risks and liability whatsoever in connection with the use of a product or its application. SemiNex Corporation reserves the right to change at any time without notice the design, specification, deduction, fit or form of its described herein, including withdrawal at any time of a product offered for sale herein. Users are encouraged to visit www.seminex.com for the latest data. SemiNex Corporation makes no representations that the products herein are free from any intellectual property claims of others. Please contact SemiNex for more information. 2024 SemiNex Corporation

