
High Power Laser Diode Chip on Carrier

Part Number: COC-107

High Power Chip on Carriers Multi-Mode Fabry-Perot Pulsed Wavelength at 1560nm

Features

- High Output Power
- High Dynamic Range
- High Efficiency
- Standard Chip on Carrier
- Cost Effective

Application

- Laser Rangefinders
- Target Illumination

SemiNex delivers the highest available power at infrared wavelengths between 12xx and 19xx nm. When necessary, we will further optimize the design of our InP & GaSb laser chips to meet our customers' specific optical and electrical performance needs. Diodes, bars and packages are tested to meet customer and market performance demands. Typical results and packaging options are shown. Contact SemiNex for additional details or to discuss your specific requirements.

SemiNex Corporation • 153 Andover Street, Suite 201, Danvers, MA 01923 • 978-326-7700 • sales@seminex.com

High Power Laser Diode Chip on Carrier

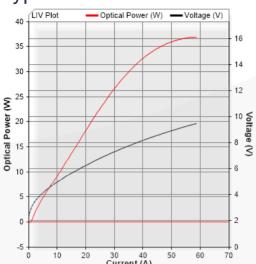
Specification

COC-107

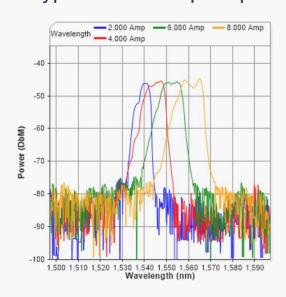
Optical	Symbol	Тур.	Units
Center Wavelength	λ _c	1560	nm (±20)
Output Power (<10ns)*	Pout	30	watts (±10%)
Output Power (150ns)*	Pout	14	watts (±10%)
Emitter Width	W	95	μm
Spectral Width FWHM	Δλ	15	nm
Slope Efficiency	η	0.3	W/A
Fast Axis Div.	Θ⊥	30	deg FWHM
Slow Axis Div.	Θ	10	deg FWHM
Electrical	Symbol		Units
Power Conversion Eff.	η	4	%
Operating Current (<10ns)	lop	100	А
Operating Current (<150ns)	lop	50	А
Threshold Current	Ітн	2	А
Operating Voltage	Vop	7	V
Duty Cycle	DC	0.1	%
Mechanical		Range	Units
Operating Temp.**		-40 to 60	°C
Storage Temp.		-40 to 80	°C

*Specified values are rated at a constant heat sink temperature of 20°C.

**High temperature operation will reduce performance and MTTF.


Unless otherwise indicated all values are nominal.

High Power Laser Diode Chip on Carrier

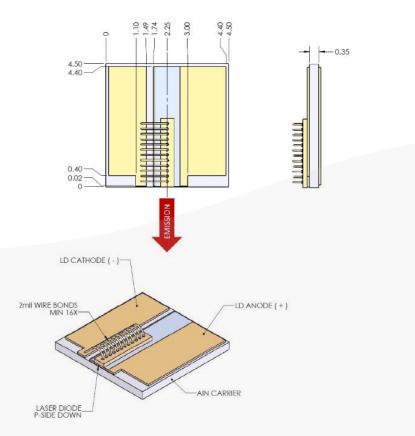


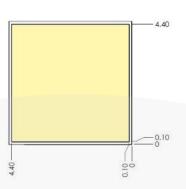
SemiNex Laser Diodes COC-107 Graphs & Data

Typical COC L-I-V Characteristics

Typical COC Output Spectrum

*Tested with 150nsec pulse @ 0.1% Duty Cycle




High Power Laser Diode Chip on Carrier

Mechanical Drawing

All statements, technical information and recommendations related to the product herein are based upon information believed to be reliable or accurate. The accuracy or completeness herein is not guaranteed, and no responsibility is assumed for any inaccuracies. The user assumes all risks and liability whatsoever in connection with the use of a product or its application. SemiNex Corporation reserves the right to change at any time without notice the design, specification, deduction, fit or form of its described herein, including withdrawal at any time of a product offered for sale herein. Users are encouraged to visit www.seminex.com for the latest data. SemiNex Corporation makes no representations that the products herein are free from any intellectual property claims of others. Please contact SemiNex for more information. 2024 SemiNex Corporation

