

Specifications subject to change without notice

Compared to conventional SiPM, ZJGD SiPM employs an intrinsic epitaxial layer as the quenching resistors and uses a continuous silicon capping layer as an anode to connect all APD cells. Thus, the device has a more compact structure and simpler fabrication technology, which allows for a larger micro-cell density (larger dynamic range) while adequate PDE. Furthermore, ZJGD SiPM helps implement a two-dimensional (2D) position-sensitive (PS) SiPM, which has attractive advantages of fewer output electrodes, simple readout electronics and a high position resolution.

Features

- **♦** Simple Readout Electronics
- **♦** High Position Resolution
- **♦** Large Dynamic Range While High PDE
- **♦** Fast Rise Time and Short Pulse Width
- **♦** Short Recovery Time and High Time Resolution
- **♦** Cost Effective

Applications

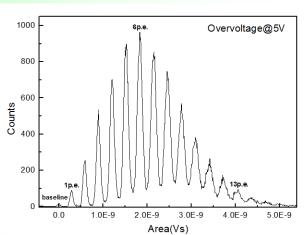
- **♦** High Energy Physics
- **♦** LiDAR
- **♦** Nuclear Medical Imaging (PET, SPECT)
- **♦** Radiation Detection and Imaging
- **♦** Optical Spectroscope
- **♦** Other Low Level Light Position-Sensitive Detection

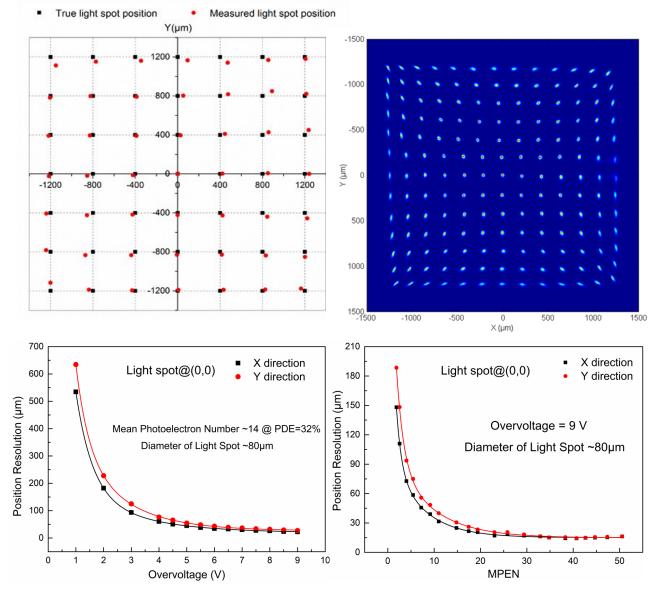
Specifications

Туре	PSS 11-3030-S	PSS 11-6060-S
Effective Pitch	10 μm	20 μm
Active Area	3.0×3.0 mm ²	6.24×6.24 mm ²
Micro-cell Number	10000 /mm ²	2500 /mm ²
Typical Breakdown Voltage (V _B)	26.5 V	27.5 V
Peak PDE @420nm	32 %	40 %
Recommended Operation Voltage	V_B + 5 V	V _B +5 V
Gain	2.0 × 10 ⁵	8.0 × 10 ⁵
Dark Count Rate (DCR)	$650 \mathrm{kHz} / \mathrm{mm}^2$	150 kHz / mm ²
Configuration of Anodes	Tetra-Lateral Anodes	Square-Bordered Anodes

Above parameters are measured at their recommended operation voltage and 20 °C.

Specifications subject to change without notice


Characteristics of PSS 11-3030-S

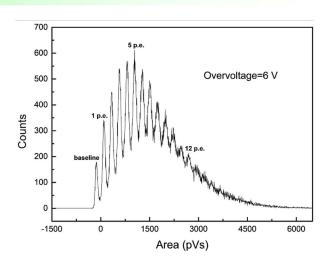

Position Algorithm

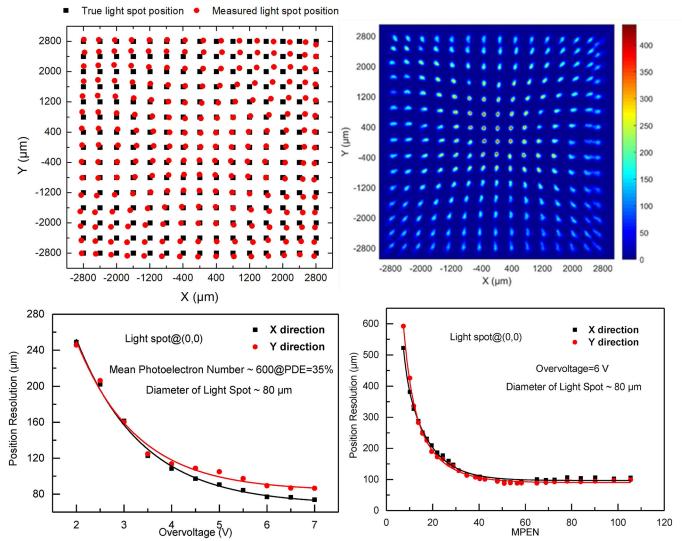
$$\chi_{\mathcal{C}} = \frac{L}{2} \cdot \frac{\left(\frac{R_0}{R_S} + 8.7492\right) (Q_4 - Q_3) \left[\left(\frac{1.7R_0}{R_S} + 5.8156\right) (Q_1 + Q_2) + \left(\frac{R_0}{R_S} - 5.8156\right) (Q_3 + Q_4)\right]}{\left[\frac{R_0}{R_S} (Q_1 + Q_2 + Q_3 + Q_4)\right]^2 - \left[1.02 \left(\frac{R_0}{R_S} + 8.7492\right) (Q_2 - Q_1)\right]^2}$$

$$y_{c} = \frac{L}{2} \cdot \frac{\binom{R_{0}}{R_{S}} + 8.7492 (Q_{2} - Q_{1}) \left[\binom{R_{0}}{R_{S}} - 5.8156 (Q_{1} + Q_{2}) + \binom{1.7R_{0}}{R_{S}} + 5.8156 (Q_{3} + Q_{4})\right]}{\left[\frac{R_{0}}{R_{S}} (Q_{1} + Q_{2} + Q_{3} + Q_{4})\right]^{2} - \left[1.02 \binom{R_{0}}{R_{S}} + 8.7492 (Q_{4} - Q_{3})\right]^{2}}$$

L is the length of the active area. R_0 is the sheet impedance, which is equal to 320 Ω . R_s is the load impedance. Q_i (i=1,2,3,4) is the shared charge of the corresponding anode.

Test Conditions: OV=9 V if not specified, Temp.=20 °C, Load Impedance = 50 Ω .

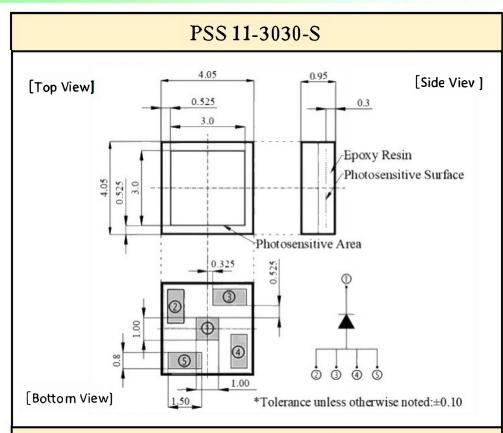

Specifications subject to change without notice

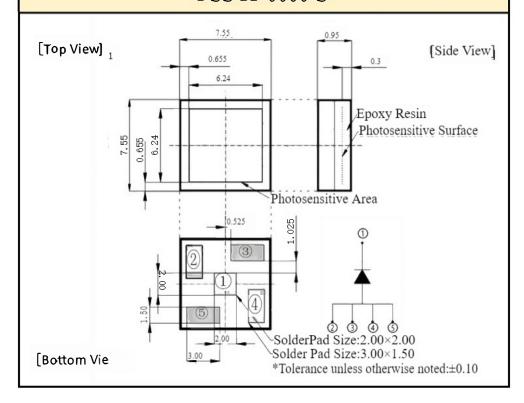

Characteristics of PSS 11-6060-S

Position Algorithm

$$x_c = \frac{L}{2} \cdot k \cdot \frac{(Q_2 + Q_3) - (Q_1 + Q_4)}{(Q_1 + Q_2 + Q_3 + Q_4)}$$
$$y_c = \frac{L}{2} \cdot k \cdot \frac{(Q_3 + Q_4) - (Q_1 + Q_2)}{(Q_1 + Q_2 + Q_3 + Q_4)}$$

L is the length of the active area. $Q_i\ (i=1,\,2,\,3,\,4)$ is the shared charge of the corresponding anode. k is the calibration factor.

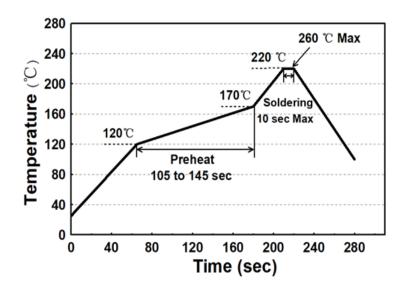

Test Conditions: OV=6 V if not specified, Temp.=20 °C.

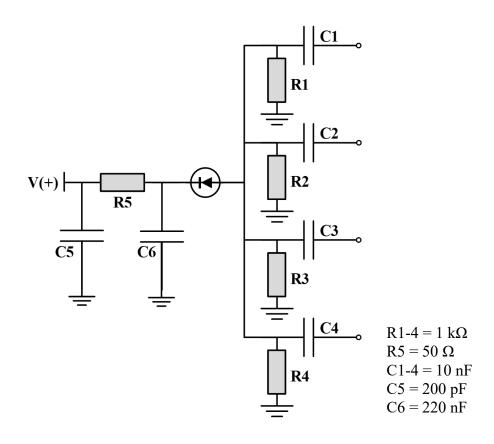


Specifications subject to change without notice

Dimensional outlines (unit: mm)

PSS 11-6060-S





Specifications subject to change without notice

Recommended Solder Reflow Conditions

Basic Connection Diagrams

